Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Dalton Trans ; 53(12): 5495-5506, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415508

RESUMO

Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.

2.
ACS Appl Mater Interfaces ; 15(37): 43667-43677, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672765

RESUMO

While uranyl-based metal-organic frameworks (MOFs) boast impressive photocatalytic abilities, significant questions remain regarding their excitation pathways and methods to fine-tune their performance due to the lack of information regarding heterogeneous uranyl catalysis. Herein, we investigated how linker identity and photoexcitation impact uranyl photocatalysis when the uranyl coordination environment remains constant. Toward this end, we prepared three uranyl-based MOFs (NU-1301, NU-1307, and ZnTCPP-U2) and then examined the structural and photochemical properties of each through X-ray diffraction, X-ray absorption, and photoluminescence. We then correlated our observations to the photocatalytic performance for fluorination of cyclooctane. The excitation profile from NU-1301 and NU-1307 exhibited spin-forbidden linker transitions and uranyl vibronic progressions, with uranyl excitation and emission being most dominant in NU-1301. Consequently, NU-1301 was a more active photocatalyst than NU-1307. In contrast, the excitation profile from ZnTCPP-U2 contained transitions associated with the porphyrin linker exclusively. Photocatalytic activity from ZnTCPP-U2 significantly underperformed in comparison to that of the other two MOFs. These data suggest that linkers' photophysical properties can be used to predict the photocatalytic behavior of uranyl-containing MOFs.

3.
Angew Chem Int Ed Engl ; 62(29): e202305526, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37208812

RESUMO

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers. We report the synthesis of the MOF NU-1700, assembled from U4+ -paddlewheel nodes and catecholate-based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers-a first among uranium materials-as a result of extensive characterization via powder X-ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

4.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786950

RESUMO

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

5.
Chem Soc Rev ; 51(3): 1045-1097, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35005751

RESUMO

A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.


Assuntos
Catálise , Íons , Conformação Molecular
6.
Chem Commun (Camb) ; 58(4): 525-528, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908041

RESUMO

A rare three-dimensional catecholate-based Ce(III) metal-organic framework (MOF), denoted as NU-1701, has been synthesized and crystallographically characterized. Density functional theory calculations highlight various possible electronic transitions that may present in NU-1701. These transitions are competitive and indicate increased lanthanide character of Ce(III).

7.
Faraday Discuss ; 225: 9-69, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242050

RESUMO

As chemists and materials scientists, it is our duty to synthesize and utilize materials for a multitude of applications that promote the development of society and the well-being of its citizens. Since the inception of metal-organic frameworks (MOFs), researchers have proposed a variety of design strategies to rationally synthesize new MOF materials, studied their porosity and gas sorption performances, and integrated MOFs onto supports and into devices. Efforts have explored the relevance of MOFs for applications including, but not limited to, heterogeneous catalysis, guest delivery, water capture, destruction of nerve agents, gas storage, and separation. Recently, several start-up companies have undertaken MOF commercialization within industrial sectors. Herein, we provide a brief overview of the state of the MOF field from their design and synthesis to their potential applications, and finally, to their commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...